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Abstract
A good model of human object recognition should mimic
human behavioral responses at its output, including mak-
ing the same pattern of errors over all images. We ap-
plied this straightforward visual Turing test to the leading
feedforward computational models of human vision (hier-
archical convolutional neural networks, HCNNs) and to a
leading animal model (rhesus macaques) by comparing
object identity reports for 240 images generated from 24
synthetic objects rendered with viewing parameter varia-
tion. Using high-throughput psychophysics in monkeys
and humans, we tested all pairwise object discrimination
tasks for each image. We observed that monkeys are
highly consistent to humans in their image-level pattern
of object confusions. Next, we found that all tested HC-
NNs were significantly less consistent with humans and
with monkeys. This gap in consistency at the image level
could not be rescued by primate-like retinal input sam-
pling, choice of output decoders, or model training. Cru-
cially, given that objects and images were in no way opti-
mized to be adversarial to HCNNs, these results show that
current HCNNs fail to replicate the image-level error pat-
terns of primates. Going forward, high-resolution, image-
level behavior could serve as a strong constraint for dis-
covering models that more precisely capture the neural
mechanisms of object recognition.
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Introduction
Specific models drawn from a large family of feedforward, hi-
erarchical convolutional neural networks (HCNNs) can now
match or exceed humans in absolute performance on object
recognition tasks, and those models constitute a dramatic ad-
vance in our understanding of neuronal population response
patterns at mid (V4) and high (IT) level of the ventral visual
processing stream (Yamins et al., 2014; Khaligh-Razavi &
Kriegeskorte, 2014). We previously observed that these par-
ticular HCNNs displayed similar patterns of object-by-object
confusions as humans and monkeys (Rajalingham, Schmidt,
& DiCarlo, 2015). However, this pattern of object-by-object
confusion is not the most stringent behavioral test, as it does
not capture the fact that some images of an object are more
challenging than other images of the same object. To over-
come this limitation, we here collected millions of behavioral

trials to precisely measure object recognition error patterns
for each image in humans, monkeys and models. We present
this high-resolution behavioral metric as a stringent behavioral
benchmark for models of human vision (a ”visual Turing test”).

Methods
Behavioral measurements
We characterized core object recognition behavior using a bi-
nary match-to-sample paradigm with 24 basic-level objects
(see Figure 1a). In order to collect sufficient trials to reliably
measure behavior on each image, we randomly selected a set
of 240 images (10 images/object) to focus data collection on.

All human behavioral data were collected from human sub-
jects on Amazon Mechanical Turk (MTurk) performing 276 in-
terleaved, basic-level, invariant, core object recognition tasks.
We pooled together trials from 1238 human subjects to char-
acterize aggregate human behavior (pooled human). Four ad-
ditional human subjects were held-out from this aggregation in
order to create a held-out human sample. Analogously, four
adult male rhesus macaque monkeys were tested on the ex-
act same object recognition tasks, using a novel home-cage
behavioral system (MonkeyTurk) which leveraged a web appli-
cation running on a tablet. All procedures were performed in
compliance with NIH guidelines and the standards of the MIT
Committee on Animal Care.

We tested several publicly available trained HCNN mod-
els (AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), VGG
(Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al.,
2015), ResNet (He, Zhang, Ren, & Sun, 2016), and Inception-
v3 (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016)). For
each model architecture, features were extracted from the
same images that were presented to humans and monkeys.
We trained back-end classifiers on the machine feature repre-
sentation, and varied the classifier type (SVM, MCC, or KNN),
the number of subsampled features, and the number of train-
ing images.

Analysis
For each image i and each distracter object J, we computed
an unbiased measure of object discrimination performance
using an image-level sensitivity index d′i,J = Z(HRi,J) −
Z(FARi,J), where Z(.) is the inverse of the cumulative nor-
mal distribution, HRi,J is the the hit rate of image i presented
against distracter J, and FARi.J is the false alarm rate of im-
ages of class J. Since previous work has already examined
the pattern of object confusions, we focused our analyses on



the object-independent variance of this metric by subtracting
the corresponding object-level sensitivity index.

To measure the consistency of image-level behavioral pat-
terns between any two visual systems x,y, we computed a
noise-adjusted correlation, ρ̃x,y =

ρx,y√
ρx,x×ρy,y

which normalizes
the raw correlation between their behavioral patterns by the
geometric mean of the split-half internal consistencies of each
system (Pearson correlation between split halves of data).

Results
In this work, we measured the behavior patterns of humans,
monkeys and HCNNs on a large set of binary object recogni-
tion tasks at the resolution of individual images. From these
data, we asked which model systems accurately capture hu-
man behavior. As previously reported, all HCNNs (with back-
end classifier parameters chosen to maximize performance)
are highly consistent with humans on an object-level behav-
ioral metric (see Fig 1b). Figure 1c (left panel) shows the
image-level behavioral consistency relative to the pooled hu-
man of all candidate models. The pooled monkey is highly
consistent with the pooled human (ρ̃ = 0.702), and almost as
good as the held-out human pool on this image-level behav-
ioral benchmark (ρ̃ = 0.765). In contrast, all candidate HCNN
architectures exhibit a significant gap in consistency to the
pooled human on this metric (e.g. Inception-v3: ρ̃ = 0.383).

Fig 1c (right panel) shows this behavioral consistency as
a function of behavioral performance, for the pooled monkey
and for all HCNNs; all tested choices of backend classifier
parameters are shown for each of the HCNN architectures.
Additionally, we modified the Inception-v3 model by 1) impos-
ing primate-like foveal sampling of images at the model input
(dark green), and 2) fine-tuning on naturalistic synthetic im-
ages (light green). While these modifications had expected
effects on performance (e.g. fine-tuning increased perfor-
mance), they did not improve behavioral consistency with re-
spect to the pooled human. No tested instance of HCNN rep-
resentation and decoder type was sufficient to capture human
image-level behavior.

Discussion
We observed that macaque monkeys demonstrated highly
similar image-by-image behavioral patterns as humans in the
domain of core object recognition, further validating this an-
imal model of vision. There was a small but significant dif-
ference in consistency between the monkey and an equal
sample of humans which could hint at a true species differ-
ence. However, this gap could also be due in part to ex-
perimental differences between MTurk and MonkeyTurk. In
contrast, we found that all tested state-of-the-art feedforward
object recognition models could not replicate human behavior
on this image-level visual Turing test. Although it had been
known that these HCNNs models diverged from human be-
havior on specifically chosen adversarial images (Szegedy et
al., 2013), a strength of our work is that we did not optimize
images to induce failure, but instead randomly sampled the
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Figure 1: (a) Binary object recognition task for humans and mon-
keys. Object-level (b) and image-level (c, left panel) behavioral con-
sistency for all candidate models. (c, right panel): Image-level be-
havioral consistency versus performance for all tested visual systems
(each point is a model instance)

generative parameter space broadly. This suggests a gener-
ality of the finding that current feedforward HCNN models do
not fully capture human core object recognition behavior, and
high-resolution, image-level behavior could serve as a strong
constraint for discovering models that more precisely capture
the neural mechanisms underlying human object recognition.
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