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Abstract
When a learning agent attempts to imitate human visuo-
motor behaviors, it may benefit from knowing the human
demonstrator’s visual attention. Such information could
clarify the goal of the demonstrator, i.e., the object being
attended is the most likely target of the current action.
Hence it could help the agent better infer and learn the
demonstrator’s underlying state representation for deci-
sion making. We collect human control actions and eye-
tracking data for playing Atari games. We train a deep
neural network to predict human actions, and show that
including gaze information significantly improves the pre-
diction accuracy. In addition, more biologically correct
representation enhances prediction accuracy.
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Introduction
A learning agent can benefit from the demonstration of human
experts. However, directly imitating a humans is challenging
for a machine, forestalled by the different underlying human
task representation. Although the environment presents the
same visual stimulus to humans and the machine, the under-
lying decision states may not be the same, partially due to the
differences in perceptual systems. While most machines use
full-resolution cameras, humans have foveal vision with high
acuity for only 1-2 visual degrees covering the width of a fin-
ger at arms length. This leads to discrepancy in perceived
states of human and machine, where the machine perceives
images like in Figs. 1a while a human may see Figs. 1c-1d.

How do we help learning agents infer the demonstrator’s
decision states? A traditional method would ask human ex-
perts to provide the representation such as hand-engineered
task-relevant features, an approach challenged by deep neu-
ral networks due to their power in representation learning
which we prefer in this work. The question becomes whether
we can provide a large amount of useful information in ad-
dition to human actions to help the deep network learn the
representation more efficiently.

A foveal visual system may seem inferior compared to a
full resolution camera, but it leads to an outstanding property
of human intelligence: the visual attention mechanism. Hu-
mans manage to move their foveae to the correct place at the

right time to perceive important task-relevant features (Diaz,
Cooper, Rothkopf, & Hayhoe, 2013; Rothkopf, Ballard, & Hay-
hoe, 2007). In this work, we propose to approach the deep
imitation learning problem with human gaze data, which is a
good indicator of the demonstrator’s attention and can be col-
lected efficiently using modern high-speed eye trackers. We
hypothesize that such information can help a learning agent
better imitate a human demonstrator’s behaviors.

Methods and Results

Data We collected human game-playing actions playing Atari
games using the Arcade Learning Environment (Bellemare,
Naddaf, Veness, & Bowling, 2012). The games only proceed
when the subject takes an action to allow enough response
time and obtain good policies. At each time step t, the raw
image frame It , human keystroke action at , and gaze posi-
tion gt were recorded. The gaze data was recorded using
an EyeLink 1000 eye tracker at 1000Hz. The game screen
is 64.6 × 40.0cm and the distance to the subjects’ eyes is
78.7cm. For this work we use 30-minute data each from
Breakout, Seaquest, and Ms.Pacman. We are in the progress
of collecting more data from different games and more sub-
jects. The dataset will be made publicly available.

Baseline model We first trained a deep network with stan-
dard supervised learning to predict human actions. The net-
work architecture follows the Deep Q-Network (Mnih et al.,
2015) which has two convolutional layers followed by two fully
connected layers. The image preprocessing procedure fol-
lows the same work, hence the input to the network is the
Y-channel of a raw image frame (Fig.1). Premasking Our
second model treats gaze as saliency information in the pixel
space. We use gaze position gt to create a gaze heatmap
similar to a saliency map (Itti, Koch, & Niebur, 1998), in which
a Gaussian filter (σ = 25) centered at gaze position is applied
to create a mask. Then we directly multiply the mask with It
element-wise. The mask has the effect of emphasizing the
stimulus centered at the gaze. The resulted output is then fed
into the same network structure as the baseline.

Foveated rendering We hypothesize that training the net-
work with realistic retinal images may improve prediction,
since these images are closer to the true human representa-
tion. We fed the visual angle of the game screen (45 degrees),
gaze positions, and images into the Space Variant Imaging



(a) Original image with gaze (b) Foveated image, 10 degrees (c) 45 degrees (the true value) (d) 80 degrees

Figure 1: The original game frames for Atari Seaquest with red circles indicating the gaze position. The gaze position is used to
generate the foveated images. Visual degree indicates the size of the game screen in the visual field.

system (Perry & Geisler, 2002)1. The software provides bio-
logical plausible simulation of the foveated retinal images as
shown in Figs. 1b. The foveated images are fed into the net-
work.

Results The prediction accuracy is shown in Table 1. In-
cluding gaze information, whether by premasking or foveated
rendering, significantly improves the performance where the
latter one has clear advantage except for Ms.Pacman.

Seaquest Ms.Pacman Breakout
Random 16.67 20.00 25.00
Baseline 41.44±0.34 34.44±0.18 55.37±0.53
Premasking 49.18±0.23 43.22±0.29 59.39±0.27
Foveated 54.49±0.10 41.73±0.25 67.95±0.28

Table 1: Percentage accuracy in predicting human actions
across three games (mean ± standard error).

The importance of correct visual angle We vary the vi-
sual angle to change clarity of the images, as if the subjects
were viewing the game screen from various distances, as
shown in Figs. 1c-1d. The actual visual angle is 45 degrees in
our experiments. We observe that the prediction accuracy de-
creases when deviated from the true value, as shown in Fig. 2,
but they all outperforms the baseline (41.44%) significantly.

Figure 2: Action prediction accuracy for models trained using
foveated images with different visual angles. 45 degrees is the
correct visual angle that yields the best performance.

Conclusion and Future Work
Foveal visual attention information helps a deep learning
agent perform an imitation learning task. Such information
can be used to provide the agent with the stimulus that human
actually perceives, or feed into the model as a saliency map.

1http://www.cps.utexas.edu/svi/

Although a large enough network with enough data may po-
tentially learn the retinal foveated representation without gaze,
gaze information simplifies the learning problem by weighting
important visual features more.

Although our model has shown improvement over the base-
line, there is much room for future work. Due to human vi-
suomotor response time, action at may not be conditioned
on the image and gaze at time t, but on images and gazes
several hundreds milliseconds ago. More importantly, the hu-
man memory system allows states of previous fixated objects
to be preserved, and an internal model may perform model-
based prediction to update the environmental states in mem-
ory. These cognitive functionalities could be readily imple-
mented by deep networks models such as a recurrent neural
network to allow a better prediction of human actions.
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